1. Decimal Fractions.

(a) Prove that every rational number has either a terminating or repeating expansion. (Hint: long division.)
(b) In light of the last question, give me a clear way to generate an infinite decimal expansion that does not repeat, thus constructing an irrational number. Be sure I can tell how to generate each digit and also make an argument why it does not repeat.
(c) Consider an infinite decimal expansion $0 . d_{1} d_{2} d_{3} \ldots$. Write it as a limit of a sequence of truncated ("cut-off") decimal representations.
(d) Prove that the sequence in the last question is Cauchy. (Reminder: a sequence a_{n} is Cauchy if for any $\epsilon>0$, there is a natural number N such that if $m, n>N$, then $\left|a_{m}-a_{n}\right|<\epsilon$.)
(e) (don't turn in) Remind yourself what a completion of a metric space is, and convince yourself that the real numbers are the completion of the rational numbers.
(f) Write $0.999 \ldots$ as the limit of a sequence of terminating decimals. Prove that the limit of this sequence is 1 . Yes, you'll have to use an $\epsilon-N$ argument.
2. Comparing Set Cardinalities. Prove using the definition of "same size" and "fits in" in class that the following pairs of sets have the same size:
(a) Prime numbers and whole numbers.
(b) Terminating decimals and repeating decimals (here you can count an infinitely repeating 0 as repeating).

