## Math 475 Homework 9

Due April 29th, 2009

1. We've defined $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$. There is another famous series expression for $e$, which we can use to prove $e$ is irrational.
(a) Write down the Taylor Series for the function $e^{x}$. (You can look it up. I'll assume you derived it in Calculus 2 and can prove it converges everywhere.)
(b) Write down an infinite series expression for $e$.
(c) Assuming $e$ is genuinely equal to the infinite series, prove $e$ is irrational. (Hint: if $e=p / q$, multiply through by ( $q$ !). This should lead to an integer part plus something you can prove is less than 1.)
2. Prove $\log _{2} 5$ is irrational. (Hint: what if it were equal to $p / q$ ? )
