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desoribes the study of both two- and three-

geometry often receives more emphasis th

dimensional shépes. Tnthe éleﬁlentary gradeé:';‘ plane

an does three-dimensional geometry. In many clasé—

rooms, students actively explore two-dimensional shapes using a rich variety of materials, including {aﬂf

grams, geoboards, and pattern blocks. Materials and lessons for exploring-three-dimensional shapes are not.

as prevalent.

This article describes how students in grades
three to five can actively explore three-dimensional
shapes using simple, inexpensive materials: paper

~and drinking straws: The article first discusses

basic principles that underlie geometry
instruction, then presents a variety of experi-
ences that focus on the properties of prisms
and pyramids and the relationships among
different shapes. - )

Geometric Thinking

The van Hiele mode! of geometric thinking guided
me in making instructional choices for my fourth-
grade students (van Hiele 1999). Based on their

S AR Lt

£t

_kbé.'srer@mindspriﬂg.com. has worked as a mathemat- B
she was teaching the fourth grade ar Durham Academy in

of ﬁ
.

' i)

experiences as teachers in-. thie’ Dutch public

schools, Pierre and Dina van Hiele developed the
thecry that students progress through the following
distinct Tevels of development in their. geometric
thinking: . : S .

Visual level. Smdents judge figires: by. theit
appearances. A child might say, “t is a rectangle
Because it looks like-a box.” ' IR

. Descriptive level. Students analyze figures

based on properties and attiibutes. They are able t

make- generalizations about specific shapes,. bul
they cannot make generalizations about how differ
ent properties of a shape relate to one another. &
how different types of shapes relate to one another

Informal-deduction level. Students can general
ize interrelationships of properties-within- the sam:
shape and among different shapes. They can undeér

stand and develop abstract definitions, and they.ca
meaningfully classify shapes in hierarchies..

The van Hiele theory asserts that:th deve10;
ment of geometric thinking is moge_:geggngent_fc
instruction than on age, The van Fieles, propose
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sequential phases of learning to help smdgnté move
from one level to another Imstruction should

include a sequence of activities that begins with |
“play” and.exploration, gradually builds concepts

. and related Janguage, and culminates in summary

activities that help students integrate new ideas into
their prevmus knowledge.

Backgrbund' of
My Students

- Prior to studying three- duuens16nal creometry, my

students had explored topics in plane geometry
through a variety of hands-on activities. I recog-
nized that most students could analyze component
parts of two-dimensional figures, consistent with
the van Hiele descriptive level of thinking. Some
students were moving toward the informal-
deduction level of thinking, in which students log-
ically order properties. '

Through. informal assessment, I found that many

~ students were still thinking about three-dimensional

shapes at the visual level. This did not surprise me

. APRIL 2003

because smdents often think shout different con-

- cepts at different levels, depending on their experi-

ence. Although many students were familiar with
‘mathematical names for three-dimensional figures
(such as cube, sphere, cylinder, and cone), they had
not developed the language to describe properties
of these shapes (such as shape of faces-and number
of edges). Students did not have enough experience
tomake generalizations about classes of shapes. For
example, I explained to one student that a cube is a
special kind of prism. She responded, “I know this
is a cube. If it is a cube, how can it also be a prism?

I thought a prism has to have a triangle-at the ends.” .

Some students knew the terms prism and pyramid,

but they associated these terms with particular -

instances of the shapes rather than with an entire
family of shapes (see figs. 1 and 2).

NCTM Standards
for Geometry.

I wanted to help my students move from a visual

level to higher levels of thinking about three-
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d1mensmnal shapes. I knew that- students would

need experience with miany different exarnples of

prisms and pyramids in order to generalize the com-

‘mon features of these classes of shapes. [ wanted to

plan activities that would engage students in build-
ing and drawing, as well as in thinking and talking
about geometric properties and relationships.

Consistent with the van Hiele theory, the NCTM
Standards advocate an active approach to learning,
with access to a variety of concrete materials.
NECTM’s Geometry Standard for grades three to
five describes specific expectations for student
learning (NCTM 2000). In developing activities for
my students, I focused pm:nanly on the followmg
expectatlons

In grades three through ﬁve all students
should—

. 1dent1fy compare, and analyze attributes of two-
and three-dimensional shapes and develop
vocabulary to descrlbe the attnbutes (descrip-
tive level);

® classify two- and three—dlmensmnal shapes
according to their properties and develop defin-
itions of classes of shapes such as triangles and
pyramids (informal deduction level);
explore congruence and similarity; and

s bujld and draw geometric objects.

" Our Flrst Model'

Folding Paper to Form
Faces of Three-

Dimensional Shapes

Rectangles to cylinders

and prisms

‘What happens when you roll up a rectangular piece
of paper? You form the curved surface of a cylin-
der. Now suppose you first fold the rectangle along
a series of parallel lines, and then overlap one or
more sections. In this way, you can form the lateral
faces of a prism (see fig. 3). Although this model
does not include the two bases of the prism, visu~
alizing these missing surfaces is easy.

I organized my students into groups of four and
gave each group a set of paper rectangles of different’
sizes, scissors, and tape. I asked each group to create at
least one model of a triangular prism, rectangular
prism, pentagonal prism, and hexagonal prism. We dis-
cussed how a prism is named for the shape of its base.

Circles to cones and pyramids

Just as cylinders can be related to prisms, 50 can
cones be related to pyramids. The students cut out
a circle, cut along one radius, then formed a cone.
Then they cut out regular octagons. By overlapping
different numbers of sections, the students created

TEACHING CHILDREN MATHEMATICS



TR ST SN DAY e

TR

N A TR T

{E¥ el

SRTEEL I

B PR

R

A B G

] TR

)

T

L s

regular pyramidé with different bases: triangular,
rectangular, pentagonal, hexagonal, and heptago-
nal (see fig. 4), Some students continued this
exploration by starting with squares and hexagons
instead of octagons.

Deécrib_ing Prisms and
Pyramids: A Beginning

After students had created paper models, I posted”’
two large sheets of paper with the headings “Prop-’

erties of Prisms” and “Properties of Pyramids.” My
goal was for students to begin to observe and com-
pare common characteristics of all prisms and all
pyramids, based on the models that they had cre-
ated. As students made observations, I introduced

terminology—ijace, edge, vertex, and plane—to

help them describe characteristics with more preci-
sion. We also reviewed terminology that students
had learned in their study of iwo-dimensional
shapes, such as polygon, parallel, and perpendicu-
lar. A. typical conversation follows,

" Student 1. A prism is like a cyhnder except that
the top and bottom are different shapes instead of
circles.

Teacher. The end faces of a cylmder or a prism
are called bases. What can you say about the bases
of all the prisms you have made? What do these
shapes have in common?

Student 1. They have straight SIdes ’Ihey are all
polygens.

Student 2. The two bases are the same size and
shape.

Teacher. So we could say that the bases of a
prism are congruent polygons.

Student 3. Here’s another thing: A cylinder is
curved between the bases. A prism has rectangles

. that connect the bases,

Teacher. Is this true for all prisms? Let’s look at
the paper models. Are these lateral faces [pointing]
all rectangles? [The stndents respond, “Yes.”]
Tomorrow we are going to create new models
using straws and connectors, You may find out that

_building a prism with lateral faces that are not nec-

essarily rectangles is possible.

Our Second Model:
Connecting Straws to
Form Edges of Three-

Dimensional Shapes

The next day, I showed my students a model of a
rectangular prism that I had constructed by attach-
ing plastic drinking straws with twist-tie connec-
tors. I asked students to compare this model with a
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paper model of a prism. The paper model shows
the prism’s faces., The straw model shows the
prism’s edges. By definition, a prism consists of all
the edges as well as all the points within the inte-
rior of each face that the edges form. -

Materials and preparation-

We used one thousand small-diameter plastic
drinking straws, an ample quantity for whole-class
investigations. I involved my stndents in measuring
and cutting the straws in three different lengths—
three inches, five inches, and seven inches. Using
straws of different lengths enables students to cre-
ate a greater variety of shapes than does using
straws of a uniform length. For connectors, we
used a box of two thousand four-inch twist-ties that
are often used to fasten plastic bags. I was able to
buy the twist-ties at a local grocery store for a low
price. Pipe cleaners also work well-as connectors,
but they are more expensive. Both the straws and
the connectors are reusable. My students under-
stood that they would be able to make several
three-dimensional shiapes and that they then would
need to dismaritle them in order to explore new
problems.

Exploratlon
My students were eager to build. I ﬁ.rst gave them

)
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time to explore the new materials freely, keeping in
mind Pierre van Hiele's statement that “geometry
begins with play.” Students built models of real
structures, including the Great Pyramid at Giza,
playground equipment, and houses with different
types of roofs. As they worked, I istened to various
questions and observations, such as “How many
straws will' I need? Do they all have to be the same
length? Look: At the top of the pyramid I have to
connect four different straws ‘at one pomt

Most students had little trouble figuring out how
to connect three or more straws at one point. Fig-
ure 5 shows one technique. If you use straws with
a greater diameter, you can fold back about an inch
of each connector for a tighter _]omt

Obhque prlsms and lrregular
pyramids :
John built a tnangular przsm Then he pushed gen-
tly on the shape, transforming two of the rectangu-

“lar faces into parallelograms without right angles.

“Look!” he said excitedly. “I squished the prism.
Does this shape have a name? Is it still a prism?”
I had anticipated this opportunity to help stu-
dents expand their understanding of prisms. We
had a class discussion about the difference between
a right prism, in which the lateral faces are perpen-

dicular to the bases, and an obligue prism. Other .

students experimented with. “squishing” other
inds of prisms by pushing them in one or more
directions (see fig. 6).-

The straws and connectors also allowed students
to expand their understanding of pyramids. Using
the paper model, students had built only regular

. pyramids, in which the base is a regular polygon

with equal sides and equal angles and the'vertex is
directly over the center of the base. Using straws,
students were able to build a greater variety of pyra-
mids (see fig. 7). Students also tested the strength of
pyramids and found that these shapes are stable and
cannot be transformed or sqmshed” like the prisms.

Structured investigations and
problem solving

After a period of free exploration, I posed the fol- .
lowing problem for students to investigate in small
groups: How many different rectangular prisms
can you build using straws of two different lengths:
3 inches and 7 inches?

In cne group, stidents qmckly set to work build-
ing the two cubes as 3 X 3% 3 inches and 7 X7 X7
inches. I infroduced the term similar, meaning the
same shape but a different size: Mel was working
on another prism with. the dimensions 7. X 3 X 3
inches. She asked, “What do you méan by “differ-
ent’? Would this prism be different if I tumed it
around so that it is tall?” We then reviewed the term
congruent, which smdents had encountered easlier
in their study of plane geometry. After some
thought, Sara Beth said, “Well, we could have a big
square on the bottom, with the shorter edges com-
ing up. That would be different.” She set o work
building the 7 X 7 X 3 solution.

1 encouraged students to record their solutions,
using drawmgs words, and numbers. Some students
were very interested in drawing two- dimensional
representations of the three- dimensional models and
spent a lot of time practicing this skill. 1 listened to

students with more drawing experience give tips to
their classmates, such as “Draw the closest face first.
Then make lines going back’

During choice time, a number of students were
interested in exploring the followmg, more chal-
lengmg problems

o How many di_fferent recta.ugulaf prisms can you
build using straws of three different lengths: 3
inches, 5 inches, and 7 mches'? (There are ten-
possibilities.) ) e

¢ How many different Lnangular pyrazmds can
you build using straws of two different lengths
5 inches and 7 inches? (Students-were surprised
to find nine different arrangements: of straws,
including both regular and: fitegular pyramids.
This problem stimulated animated dlscussmn
about congruency and symmetty.)

Counting Faces,

Edges, and Vertices:
Connecting Geometry
and Algebra :

“How many faces does a cube have?” My students
were confident that a cube has six faces. They had
been using the terms face, verfex, and edge to
describe shapes. Now I wanted them to think about
how the structure of a figure relates to the number of
its faces, vertices, and edges. I asked, “How many

TEACHING CHILDEEN MATHEMATICS
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faces does a prism have?’ I was pleased when stu-
dents responded, “It depends on the kind of prism.”

I knew that counring faces, vertices, and edges - -
of three-dimensicnal shapes would provide rich’

opportunities for exploring algebraic patterns. As

Principles 'a:_zd Standards states, “Students should"
have the opportimity to apply geometric ideas and

relationships to other areas of mathematics. . .. In
algebra, students in grades. 3-5: often work with
geometric patterns to explore patterns and func-
tions” (NCTM. 2000, p. 169).

I gave the students charts to help them record
their information (see fig. 8). As students counted
and recorded numbers, many of them eﬁcpressed
excitement as they observed emerging patterns.
With some guided questions, students were able to
connect the numeric patterns with the geometric

structure of prisms as follows.

Studenz 1. The number of vertices for a prism is
even,
Teacher. Does this make sense? Why would the

number of vertices of a prism be an even number?
Student 2. Well, for a triangular prism, there are:

three points at the bottom and three more at the top
‘That’s double. It’s an even number. -

Teacher. Would this be true for any pnsm" What'

if the prism had five sides on the base?

Student 1. Then there wonld be five pomts. on

the bottom and ﬁve more on: the top It $- always

To heIp students generahze the relauonslup
between the number of sides on the base of a prism
and the number of faces, vertices, and edges, I
asked them to visualize a prism with ten sides on
the base. I said, “Try to picture a decagonal prism
in your mind, without building a model. What can

you say about the noumber of faces, vertices, and.
edges?” Many students answered this question suc- -

cessfully, either by visualizing the prism, analyzing
the nuineric patterns, or both.

With a group of interested students I introduced
the idea of using the variable n to represent the
number of sides on the base of a prism. Students
were able to generate the functions: Faces = n + 2,
Vertices =n * 2, BEdges = p * 3,

In a similar way, we counted 'faces,'verticés, and
edges of different pyrainids and analyzed patterns.
After their experience with prisms, many students
were able to analyze and generalize patteriis for

pyramids independently; for example; using the-

variable z to represent the number of sides on the
base of a pyran:ud Faces=n + 1, Veruces =np+1],

‘ Edges =n*2.

'Descrlbmg Prlsms and
Pyramids, Continued

Throughout the week, the students contimued to
add to their list of descriptions on the charts labeled

" "‘Propértieé of Prisms” and “Properties’of Pyra-
~ mids.” A few students attempted to-develop defini-
 tions by using minimal facts, a practice character-

istic of the formal-deduction level of thinking. For
example, Noah read from his journal: “A prism is a
shape elongated with its edges fonmng rectangles
to another shape, the exact same one as the starting

shape thatwas elongated.” In a class discussion, we

considered Noah's definition. One student sug-
gested changing the word “rectangles” to “parailel-
ograms” so that the definition would include

oblique prisms. Toward the end of the week, I

shared some textbook definitions of prism and
pyramid with the class. Students were particularly
intrigued by the following definition: “A prism is a

three-dimensional shape whose cross-sections, cut

parallel-to an end face, are the same shape as the
end faces.” Students realized that this definition
also would include cylinders, so we addeda state-
ment that the end faces are polygons.

In addition to participating in whole-class and
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small-group discussions, students kept individual

journals in which they recorded descriptions, draw-

“ings, and solutions to problems. During the week, I
observed students moving through different levels

of geometric thinking. At the beginning of the

week, Claire wrote in her journal: “A prism is a

shape stretched out. A pyramid is a shape with a
pointy top.” She was describing the holistic appear-

ance of these shapes and thinking at the visual

ticipating in class discussions, Claire added to her

descriptions: “A prism has parallel edges and par-
alle] bases. A pyramid has triangles for sides that

meet at the top and form a vertex.” Now she was

using more precise vocabulary to describe specific
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level. After building models with straws and par- |
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properties of shapes, showing descriptive-level
thinking. After looking for patterns in a prism’s
nutmber of faces, vertices, and edges, Claire wrote
this generalization: “For a prism, the number of

. faces is two more than the number of sides on the

base because you have a face for every side and
then you add the two bases. For a pyramid, the
number of faces is just one more than the number
of sides on the base.” . )

Tn reading the students’ journal entries, I noticed
how they made personal sense of ideas we had dis-
cussed in class. For example, Laura made the fol-
lowing journal entry after a class discussion about
the distinction between a base and a lateral face:
“Pyramids always have a vertex at'the top, no mat-
ter how many faces. The base is always the shape
that is not a triangle, unless it is a triangular pyra-
mid, and in that case any face can be the base.
Prisms always have two bases. If it is a rectangular
prism, it doesn’t matter which side is the base
because all of the faces are rectangles.”

Conclusion

“When can we build. again?” By the end of the
week, my students had all become successful model
builders and they were eager 0 continue exploring
with the straws and connectors. These simple mate:
rials had allowed stadents to construct knowledge
about three-dimensional shapes in an active way. A
they built, students also ‘were engaged in talking
about their models, so they learned and used nev
vocabulary in a meaningful context. Instead of sim
ply memorizing definitions, students were develop
ing precise ways to describe and classify shape
based on their own observations and experiences.
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The Platonic Solids

Five special polyhedra are called the Platonic solids, in honor of Plato,
who thought of these solid shapes as associated with earth, fire, water, air,
and the whole universe. These are the five Platonic solids:

Tetrahedron is made of 4 equilateral triangles, with 3 triangles coming
together at each corner.

Cube is made of 6 squares, with 3 squares coming together at each corner.

Octahedron is made of 8 equilateral triangles, with 4 triangles coming to-
gether at each corner.

Dodecahedron is made of 12 regular pentagons, with 3 pentagons coming
together at each corner.

Icosahedron is made of 20 equilateral triangles, with 5 triangles coming
together at each corner.

The Platonic solids are special because each one is made of only one kind
of polygon, and the same number of polygons come together at each corner,
The names of the Platonic solids make sense because hedron comes from the
Greek for faces, while tetra, octa, dodeca, and icosa mean 4, 8, 12, and 20,
respectively. So for example, icosahedron means 20 faces, which makes sense
because an icosahedron is made out of 20 triangles.

While cubes are commonly found in daily life (such as boxes and ice
cubes), the other Platonic solids are not commonly seen. However, these
shapes do occur in nature occasionally. For example, the mineral pyrite can
form a crystal in the shape of a dodeca.hedron (tlns crystal is often called a

" pyritohedron}. _ S

tetrahedron

dodecahedron




